Finiteness theorems for universal sums of squares of almost primes

نویسندگان

چکیده

In this paper we study diagonal quadratic forms which are universal when restricted to almost prime inputs, establishing finiteness theorems akin the Conway–Schneeberger 15 theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Almost Universal Mixed Sums of Squares and Triangular Numbers

In 1997 K. Ono and K. Soundararajan [Invent. Math. 130(1997)] proved that under the generalized Riemann hypothesis any positive odd integer greater than 2719 can be represented by the famous Ramanujan form x2 + y2+10z2; equivalently the form 2x+5y+4Tz represents all integers greater than 1359, where Tz denotes the triangular number z(z+1)/2. Given positive integers a, b, c we employ modular for...

متن کامل

Sums of Primes and Squares of Primes in Short Intervals

Let H2 denote the set of even integers n 6≡ 1 (mod 3). We prove that when H ≥ X, almost all integers n ∈ H2 ∩ (X,X + H] can be represented as the sum of a prime and the square of a prime. We also prove a similar result for sums of three squares of primes.

متن کامل

Sums of almost equal prime squares

In this short note, we prove that almost all integers N satisfying N ≡ 3 (mod 24) and 5 -N or N ≡ 4 (mod 24) is the sum of three or four almost equal prime squares, respectively: N = p21 + · · ·+ p 2 j with |pi − (N/j) 1/2| ≤ N1/2−9/80+ε for j = 3 or 4 and 1 ≤ i ≤ j.

متن کامل

On Sums of Powers of Almost Equal Primes

We investigate the Waring-Goldbach problem of representing a positive integer n as the sum of s kth powers of almost equal prime numbers. Define sk = 2k(k − 1) when k > 3, and put s2 = 6. In addition, put θ2 = 19 24 , θ3 = 4 5 and θk = 5 6 (k > 4). Suppose that n satisfies the necessary congruence conditions, and put X = (n/s). We show that whenever s > sk and ε > 0, and n is sufficiently large...

متن کامل

Universal Mixed Sums of Squares and Triangular Numbers

In 1997 Ken Ono and K. Soundararajan [Invent. Math. 130(1997)] proved that under the generalized Riemann hypothesis any positive odd integer greater than 2719 can be represented by the famous Ramanujan form x 2 + y 2 + 10z 2 , equivalently the form 2x 2 + 5y 2 + 4T z represents all integers greater than 1359, where T z denotes the triangular number z(z + 1)/2. Given positive integers a, b, c we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2022

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8663